Article 8421

Title of the article

Features of designing a highly sensitive auto-compensating angular accelerometer using optocoupler-lightguide elements 

Authors

Aleksandr I. Soroka, Engineer of the Research Institute of Special Engineering, Bauman Moscow State Technical University (building 1, 5 the 2nd Baumanskaya street, Moscow, Russia), E-mail: sorokaai@mail.ru
Aleksandr V. Kolesnikov, Postgraduate student, Bauman Moscow State Technical University (building 1, 5 the 2nd Baumanskaya street, Moscow, Russia), E-mail: kolesnikov.a.v@bmstu.ru
Konstantin P. Likhoedenko, Doctor of engineering sciences, professor, professor of the sub-department SM-5, Bauman Moscow State Technical University (building 1, 5 the 2nd Baumanskaya street,
Moscow, Russia), E-mail: kafsm5@bmstu.ru
Yuliya A. Sidorkina, Doctor of engineering sciences, associate professor, professor of the sub-department SM-5, Bauman Moscow State Technical University (building 1, 5 the 2nd Baumanskaya street, Moscow, Russia), E-mail: sidyulia5968@bmstu.ru
Artem A. Tungushpaev, Postgraduate student, Bauman Moscow State Technical University (building 1, 5 the 2nd Baumanskaya street, Moscow, Russia), E-mail: tungushpaev@bmstu.ru 

Index UDK

531.768 

DOI

10.21685/2072-3059-2021-4-8 

Abstract

Background. The object of the research is an auto-compensating angular accelerometer for angular stabilization systems, high-precision navigation and guidance. The subject of the research is the method of designing an auto-compensating angular accelerometer on a torsion suspension with an optocoupler of the angular position of the sensitive element. The purpose of the work is to calculate the most critical components of a high-precision angular accelerometer of an auto-compensation type, the design of which is presented in the description of the invention to the copyright certificate No. 851136 “Converter of mechanical quantities”, satisfying technical requirements for aviation and space instrumentation. Materials and methods. The calculation of the most critical nodes of a high-precision angular accelerometer of an auto-compensation type was performed using numerical methods for solving nonlinear equations, differential and integral calculus, and mathematical modeling. Results. A technique has been developed for designing the most critical components of an auto-compensating angular accelerometer designed for systems of angular stabilization, high-precision navigation and guidance. The calculations of the mechanical oscillatory system, optocoupler sensor of the angular position of the sensitive element, magnetic circuit and feedback coil of the angular accelerometer are performed. An analysis of the nonlinear system’s stability with its division into phases of slow and fast motion (self-oscillating mode) is carried out, and its main characteristics are determined. Conclusions. The performed calculations showed the possibility of constructing the proposed design scheme of a high-precision angular acceleration meter that meets the requirements formulated for aviation sensors for automated control and registration of motion parameters in terms of its main technical characteristics and simplifying its design compared to currently used analogues. 

Key words

Angular acceleration sensor, auto-compensating angular accelerometer, torsion bar, vibration, optical meter small displacements 

Download PDF
References

1. Koptev Yu.N. (ed.). Datchiki teplofizicheskikh i mekhanicheskikh parametrov: spravochnik v 3 t. T. 1. = Sensors of thermophysical and mechanical parameters: reference book in 2 volumes. Volume 1. Moscow: IPRZhR, 1999:548. (In Russ.)
2. Konovalov S.F. [et al.] Temperature drift and zero signal instability of pendulum compensation accelerometers. XXVII Sankt-Peterburgskaya mezhdunar. konf. po integrirovannym navigatsionnym sistemam: sb. materialov (Sankt-Peterburg, 25 maya – 5 iyunya 2020 g) = The 27th Sain-Petersburg international conference on integrated navigation systems: proceedings (Saint Petersburg, May 25 – June 5, 2020). Saint Petersburg: Kontsern «Tsentral'nyy nauchno-issledovatel'skiy institut "Elektropribor"», 2020:237–243. (In Russ.)
3. Benser E.T. Trends in inertial sensors and applications. 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings, Hapuna Beach, HI, USA, 2015:1–4. doi: 10.1109/ISISS.2015.7102358
4. Patent USA, Cl. MKI G 01P 15/08, № 3494204 Accelerometer producting a linear electrical output. Whitehead H. S. 10.02.1970.
5. A. s. 562738 SSSR, MKI G 01 L 3/14. Device for measuring moments, forces and accelerations. R.V. Aleksandrov, V.I. Morgunov, L.N. Orlov (SSSR). No. 2320046/10; appl. 02.02.1976; publ. 25.06.1977, bull. No. 23:2. (In Russ.)
6. Kornienko A.N., Goryaeva M.O. Issledovanie konstruktivnoy skhemy odnokomponentnogo akselerometra kompensatsionnogo tipa na magnitorezonansnom podvese = The research of the design scheme of a single-component compensating type accelerometer on a magnetic resonance suspension. Moscow: Inzhenernyy vestnik, 2017;(1):24–30. (In Russ.)
7. A. s. 851136 SSSR, MPK G 01 L 3/14. Converter of mechanical quantities. A.A. Krasovskiy, A.I Soroka, V.V. Cherkashin (SSSR). No. 2866555; appl. 07.01.80; publ. 30.07.1981, bull. No. 28:5. (In Russ.)
8. Dimenetberg F.M., Kolesnikov K.S. (eds.). Vibratsii v tekhnike: spravochnik v 6 t. T. 3 = Vibrations in technology: reference book in 6 volumes. Volume 3. Moscow: Mashinostroenie, 1980:544. (In Russ.)
9. Ditchbern R. Fizicheskaya optika: per. s angl. = Physical optics:: translated from English. Moscow: Nauka, 1965:631. (In Russ.)
10. Jones R.V. Some developments and applications of the optical tever. Journal of scientific instruments. 1961;38(2):37–45.
11. Soroka A.I. Optocoupler-lightguide sensors of displacements of sensitive elements of gravel measuring systems. Navigatsiya po gravitatsionnomu polyu Zemli i ee metrologicheskoe obespechenie: doklady nauch.-tekhn. konf. (Mendeleevo, 14–15 fevralya 2017 g.) = Navigation on the gravitational field of the Earth and its metrological support: proceedings of scientific anf engineering conference (Mendeleevo, February 14-15, 2017). Mendeleevo: Vseros. nauch.-issledov. in-t fiz.-tekhn. i radiotekhn. izmereniy, 2017:283–290. (In Russ.)
12. Kartashev A.A., Etsin I.Sh. Metody izmereniya malykh izmeneniy raznosti faz v interferentsionnykh ustroystvakh = Methods for measuring small changes in phase difference in interference devices. Uspekhi fizicheskikh nauk. 1972;107(4):687–721. (In Russ.)
13. Cherednichenko I.V. [et al.] Structure and properties of alloys for permanent magnets YuNDK25BA, obtained by the method of directional crystallization with a liquid-metal cooler. Trudy VIAM = Proceedings of VIAM. 2017;(11):29–36. (In Russ.)
14. Bul' O.B. Metody rascheta magnitnykh sistem elektricheskikh apparatov. Magnitnye tsepi, polya i programma FEMM = Methods for calculating the magnetic systems of electrical apparatus. Magnetic circuits, fields and the FEMM program. Moscow: Akademiya, 2005:336. (In Russ.)
15. Drazenovic D. The Invariance Conditions in Variable Structure Systems. Automatica, Pergamon Press, 1969;5(3):287–295.
16. Yurevich E.I. Teoriya avtomaticheskogo upravleniya. 3-e izd. = Theory of automatic control: the 3rd edition. Saint Petersburg: BKhV-Peterburg, 2007:560. (In Russ.)

 

Дата создания: 02.03.2022 08:50
Дата обновления: 02.03.2022 13:11